没有新消息
0 条评论
暂无评论,快来写下您的评论
问题来自于
银河几斤重
想往数据分析方向发展,需要学习或者具备什么能力
如题,目前在做很初级的数据分析,常用Excel比较多,我想长远发展的,需要去学习或者说需要培养什么技能(PS完全零基础在这个领域,大学既不是这个专业,毕业一年后转行做数据分析的)
45124
阅读
19
回答
合作商务邮箱:sbyh@zhaopin.com.cn
京ICP备17067871号 合字B2-20210134
违法不良信息举报电话:400-885-9898
关爱未成年举报热线:400-885-9898-7
朝阳区人力资源与社会保障局 监督电话: 57596212,65090445
想往数据分析方向发展,需要学习或者具备什么能力
这里先列一个简易大纲。它更多是以互联网行业展开的。 入门和职业规划应该从两个角度考虑:领域和路线。 领域是不少新人常忽略的要素,其实数据分析不会脱离业务存在。你进入哪个行业,很大程度会决定你初期的技能树和技能点。譬如金融领域的风控模型、营销领域的生命周期、广告领域的点击率预估等,各有各的特色。 如果是一位应届生,不妨多了解自己感兴趣的领域,和专业相关是最好的,并且积累相关的经验,为面试做准备。 如果已经有一定行业履历,只是想要转岗数据分析师,那么跨岗不跨行,避免跳到一个陌生的领域。 领域经验太宽泛,我给不了太多的指点,主要也就三点:1.自己感兴趣的,2.自己擅长的,3.有钱途的。从职场生涯看,成为某领域的数据专家,会是一个更好的筹码。 而路线大致可以划分成四大方向: 数据分析,数据挖掘,数据产品,数据工程。 数据分析/数据运营/商业分析 这是业务方向的数据分析师。 绝大部分人,都是从这个岗位开始自己的数据之路,也是基数最大的岗位。 因为基数大,所以这类岗位通常鱼龙混杂。有些虽然叫数据分析师,但是每天只需要和Excel打交道,完成leader布置的表格整理工作就行。混个几年,成为一位数据分析主管,给下面的新人继续布置Excel任务。 又有一种数据分析师,岗位职责要求你掌握常用的机器学习算法,面试首先推导一个决策树或者逻辑回归。入职后也是各类代码,和分析打交道的情况不多。 都叫数据分析师,其实天差地别。 这里更多指互联网行业,偏业务的数据分析师,一般属于运营部门。不少公司也称数据运营或者商业分析。 这类岗位的职位描述一般是: 负责和支撑各部门相关的报表; 建立和优化指标体系; 监控数据的波动和异常,找出问题; 优化和驱动业务,推动数据化运营; 找出可增长的市场或产品优化空间; 输出专题分析报告; 实际情况是,不少业务端的数据分析师,主要工作只做第一点。别管它用汇总、分析、数据支持什么修饰词,基本是跑SQL,做报表。硬生生活成了业务端的表哥。 这是很常见的情况,也是入门新人的第一个坑。因为从头到尾,这类分析师,都没有解决问题。 业务部门往往更关心,某个指标为什么下跌或者上升。产品的用户是什么样的?怎么能更好的完成自己的KPI。 以活跃指标的下跌举例: 活跃指标下跌了多少?是属于合理的数据波动,还是突发式? 什么时候开始的下跌? 是整体的活跃用户下跌,还是部分用户? 为什么下跌?是产品版本,还是运营失误? 怎么解决下跌的问题 这是一套标准的解决思维。分别对应what、when、who、why、how,每一部分都不是三言两语可以解释清楚。不要看它简单,例如你通过多维分析,发现某个地区的活跃下跌了,不要急着把它作为分析的结论,这是不合格的数据分析。某地区的活跃下跌,只是现象,不是原因,把它作为结论提交,肯定会被骂的。 你要解决的是,为什么这个地区的活跃下跌了。是该地渠道,是该地竞争对手,是该地市场环境?这些问题都是细化深入的范畴。并且,它们要能以量化解释,而不是我认为。 做好了这点,才是一个真正的业务端的数据分析师。 当然,这一点看的是leader。leader能否带你进入业务分析的大门,决定你将来是不是成为一个表哥。新人切记切记。 解决问题是一方面工作,另外一方面,数据分析师的职责是将业务数据体系化,建立一套指标框架。活跃下跌的问题,本质上也是指标问题。什么时候开始下跌,哪部分下跌,都能转化成对应指标,如日活跃用户数,新老用户活跃数,地区活跃数。 你不能衡量它,就无法增长它,指的就是指标体系。指标体系可以是业务部门建立,但数据分析师也挺合适。一方面他们比数据挖掘这类技术岗位更贴合业务,一方面不像业务岗位对数据抓瞎。 两者结合,这岗位也能称为数据运营。 指标体系如果工程化自动化,也就是BI,所以数据分析师可以算半个BI分析师,这里不包括BI报表开发。BI如果采购第三方,数据分析师负责BI没问题,如果自有开发,那么BI岗技术的色彩更浓厚。 数据分析思维和业务的理解,是分析师赖以生存的技能。很多时候,工具是锦上添花的作用。掌握Excel+SQL/hive,了解描述统计学,知道常见的可视化表达,足够完成大部分任务。机器学习这类能力,对此类数据分析师不是必须的,Python也一样,只是加分项。毕竟为什么下跌,你无法用数据挖掘解答。 数据分析师是一个基础岗位,如果专精于业务,更适合往管理端发展,单纯的工具和技巧很难拉开差距。数据分析的管理岗,比较常见的有数据运营经理/总监,数据分析经理等,相对应的能力是能建立指标体系,并且解决日常的各类「为什么」问题。 商业/市场分析是另外一个方向,更多见于传统行业。你要开一家超市,你得考虑哪里开,这就要考虑居民密度,居民消费能力,竞争对手的多寡,步行交通距离,开车交通距离等。这些数据是宏观的大指标,往往靠搜索和调研完成,这是和互联网数据分析师最大的差异。 若往其他分支发展,比如数据挖掘工程师,则要继续掌握Python和机器学习等。从业务型发展上来的好处是接地气,具备商业洞察力(天天搞报表,怎么可能不熟),这点是直接做数据挖掘,或者程序员转岗,所不具备的。 新人,比较普适的发展路线是先成为一位数据分析师。积累相关的经验,在一两年后,决定往后的发展,是数据挖掘,还是专精数据分析成为管理岗。 学习资料: 这里对学习资料不再多做推荐,看历史文章:如何七周成为数据分析师 数据挖掘/算法专家 这是技术向的数据岗,有些归类在研发部门,有些则单独成立数据部门。 数据挖掘工程师要求更高的统计学能力、数理能力以及编程技巧。 从概念上说,数据挖掘Data mining是一种方式,机器学习Machine Learning是一门方法/学科。机器学习主要是有监督和无监督学习,有监督又可划分成回归和分类,它们是从过去的历史数据中学习到一个模型,模型可以针对特定问题求解。 数据挖掘的范围则大得多,即可以通过机器学习,而能借助其他算法。比如协同过滤、关联规则、PageRank等,它们是数据挖掘的经典算法,但不属于机器学习,所以在机器学习的书籍上,你是看不到的。 除此之外,还有一个领域,属于最优化问题的运筹学。现实中的问题往往有很多约束,比如护士排班,一共有三班(早、中、晚),现在要求每班满足最低护士人数,每位护士尽量不能连班,每位护士不能连续工作5天。每位护士的夜班数要均衡,每位护士每月的班数要均衡…这些问题很难用机器学习的方法完成,而在最优化领域,则有遗传算法、模拟退火算法、蚁群算法等。 实际的应用场景中,如外卖行业,如何寻找骑手效率最大化的最优路径,同样属于最优化,也是数据挖掘的工作范畴。 数据挖掘工程师,除了掌握算法,同样需要编程能力去实现,不论R、Python、Scala/Java,至少掌握一种。模型的实施,往往也要求Hadoop/Spark的工程实践经验,精通SQL/Hive是必须的。 常见数据挖掘项目的闭环如下: 定义问题 数据抽取 数据清洗 特征选取/特征工程 数据模型 数据验证 迭代优化 单看环节,数据挖掘对分析能力没有业务型那么高。这不代表业务不重要,尤其在特征选取方面,对业务的理解很大程度会影响特征怎么选取,进而影响模型质量。用户流失是一个经典的考题,如何选取合适的特征,预测用户会否流失,能够考察对业务是否深刻洞察。 数据挖掘的业务领域一样可以细分。金融行业的信用模型和风控模型/反欺诈模型、广告模型的点击预估模型、电商行业的推荐系统和用户画像系统。从需求提出到落地,数据挖掘工程师除了全程跟进也要熟悉业务。 因为要求高,所以数据挖掘的平均薪资高于数据分析师。 一个分工明确的团队,数据分析师负责将业务需求抽象成一个具体的数据假设或者模型。比如,运营希望减少用户流失,那么设立一个流失指标,现在需要预测用户流失率的模型。模型可以是数据分析师完成,也能是数据挖掘工程师。最终由数据挖掘团队部署到线上。 在一些公司,高级数据分析师会等价于数据挖掘工程师(其实行业内,对Title并没有严格的标准),只是工程能力可以稍弱,模型部署由专门的工程团队完成。 数据挖掘工程师,往后发展,称为算法专家。后者对理论要求更严苛,几乎都要阅读国外的前沿论文。方向不局限于简单的分类或者回归,还包括图像识别、自然语言处理、智能量化投顾这种复合领域。这里开始会对从业者的学校和学历提出要求,名校+硕士无疑是一个大优势,也有很多人直接做数据挖掘。